Friday, 29 June 2012

Odyssey Magazine article - Brain Plasticity & Indigo Learning

Developmental Dyslexia: Differences in the Pre-Reading Brain by Bill Jenkins, Ph.D

Dyslexia is thought to affect a high percentage of people. The condition can be caused by biological changes during brain development (known as developmental dyslexia) or by environmental effects such as illness or injury (known as acquired dyslexia). In their recent article published in the Proceedings of the National Academy of Sciences, Nora Maria Raschle, Jennifer Zuk and Nadine Gaab cite estimates that developmental dyslexia affects between 5 and 17% of all children. (2012) They further outline how it can have detrimental effects on a child’s life both inside the classroom as well as beyond. 
For these reasons, educators and researchers have placed intervention strategies for developmental dyslexia very high on their priority list.
While much progress on such interventions has occurred in the area of helping individuals with developmental dyslexia once they have been diagnosed, other research is delving into identifying the neurological and physiological differences between brains that develop the condition and those that do not.
To find out if there are identifiable predictors of developmental dyslexia, Raschle, Zuk and Gaab examined the functional brain networks during phonologic processing in 36 pre-reading children with an average age of 5.5 years. That is they were looking for brain differences even before any of the children had learned to read since previous brain studies of dyslexia have been conducted on individuals after they have begun to read, albeit poorly. All of the subjects were of a similar socioeconomic status; most came from homes with relatively high SES and strong language skills.  These are the type of home environments that typically result in the development of good language and reading skills.
The only substantive difference between the groups in this study was that half of the subjects had a family history of developmental dyslexia, while the other half did not.
Interestingly, the 18 children with a family history of dyslexia scored significantly lower than those who had no family history on a number of standardized assessments, including:
  • Clinical Evaluation of Language Fundamentals (CELF), Core language
  • CELF, Expressive language
  • CELF, Language structure
  • Comprehensive Test of Phonological Processing (CTOPP), Elision
  • Rapid Automatized Naming (RAN), Objects
  • RAN, Colors
  • Verb Agreement and Tense Test (VATT), Repetition
Not only did the research team examine the two groups’ performance on these evaluations, but they also used functional magnetic resonance imaging (fMRI) scanning to identify what was happening in the brains of each learner during the examinations.
Brain activity in the left lingual gyrus as well as the temporoparietal brain areas correlated with phonological processing skills. Interestingly, the team discovered that members of the group with a family history of dyslexia showed a reduced activation in these areas even before learning to read. Their discoveries suggest that the left temporoparietal region of the brain in this group reflect an inability to map phonemes to graphemes. In other words, their brains simply were not adequately developed to match language sounds with their written counterparts. In addition, this same region of the brain – also known as the “visual word form area” – seems to be involved in processing words during reading in both children and adults. 
The authors unequivocally state, “Developmental Dyslexia can have severe psychological and social consequences, potentially negatively impacting a child’s life.”  All too often, we identify learning disabilities much too late. In the case of dyslexia, we might make such a diagnosis and begin interventions halfway through elementary school, but by then we have much catching up to do. If these students’ vocabulary skills and motivationto read have already been compromised, the climb back may be much more difficult than if had the situation been identified earlier.
Research like that of Raschle, Zuk and Gaab will help us begin to address learning disabilities at the neurological and physiological levels much earlier in life. Through very early diagnosis and intervention, we may one day be able to more effectively ameliorate – and maybe even eliminate – the distressing experience of developmental dyslexia.
Read this study to learn how Fast ForWord helped significantly improve reading skills in children with dyslexia.
Reference:
Raschle, N. M., Zuk, J. and Gaab, N., 2012, "Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset." PNAS, v. 109, p. 2156–2161.
Related Reading:

Thursday, 3 May 2012

3 Tips for encouraging verbal communication in young learners by Carrie Gajowski


“It is now well accepted that the chief cause of the achievement gap between socioeconomic groups is a language gap.”
- E.D. Hirsch, 2003
Research shows that children from rich language environments start off their academic career with a definite advantage over their peers.  In one study with 280 1stgrade students, results indicated a strong connection between language skills and later academic performance.[i]   Another study found that “children who are provided a wide variety of experiences and opportunities to talk, tell stories, read storybooks, draw, and write are generally successful in learning to read and write.”[ii]
How can parents enhance the home language environment to help their children succeed?
Here are a few simple ways: 
  1. Talk, talk, and talk to children.  Engage them in meaningful conversation, and help them “use their words” to interact with other children.  Help build their vocabulary by using words they may not recognize.  Adding unfamiliar words to conversations can pique a child’s interest in learning additional words and discovering how to use them in conversation. 
  2. Read to young learners.  Regularly reading a variety of texts to children—stories, poems, factual books about animals and the natural world—can expose them to countless new words.  It is even more fun by taking turns.  If your child has started to read, one day you can read to him; the next day, he can read to you.  Pre-readers can “read” a picture book out loud.
  3. Teach your young students the joys of music!  Through learning new songs and singing, children can have fun while learning new vocabulary.  The rhythm of music provides cues that can help children pronounce multisyllabic words more easily, and because young children don’t have to worry about pronouncing every new word correctly when singing with others, they can build their confidence.
It’s never too early to help children appreciate the usefulness of language, the power of communicating effectively with others, and the joy of words.  Every word spoken and every word read is truly a gift to a young child.

References:
[i] Elements Comprising the Colorado Literacy Framework:  III.Communication Skills, Including Oral and Written Language. (2010).Colorado Literacy Framework. Retrieved April 26, 2012.
[ii]  Kastner JW, May W, Hildman L. Relationship between language skills and academic achievement in first grade.  Percept Mot Skills. 2001 Apr;92(2):381-90.PMID: 11361297 
Related Reading:

Monday, 27 February 2012

Mirror Neurons by Martha Burns, Ph.D

What is a parent to do to get a child’s brain started out on the right path – to be able to concentrate on one task for extended periods, be able to handle rapidly changing information, and be flexible enough to switch tasks easily?
Well, it turns out the human brain seems to have a strategy: by developing two core capacities during the first few years of life, interactive play and language, the brain seems to become uniquely equipped to build a range of cognitive capacities.  Recent research suggests that a specific area in the frontal lobe – ‘the doing part of the brain’ - begins to wire itself very early in development through imitation of the movements and sounds made by others. This area, the so-called mirror neuron region, allows an infant to watch or listen to other people and respond with imitative or complementary movements or sounds.  
Because this area is the same region, in the left hemisphere, that is responsible for fluent, easy articulated, speech, researchers have speculated that it might have been an evolutionary starting point for development of human language. But, because it is also active in the right hemisphere, it seems to play an important role in social, and perhaps athletic, interaction. In fact, Miella Dapretto and her colleagues at UCLA recently reported research showing that children with autism spectrum disorders, which include a range of disturbances that impact, among other things, social skill development, have observable deficiencies in the mirror neuron system.
There is reason to speculate, based on the research now available, that exercising the mirror system in general, can build a brain that is better equipped for socialization, school, music and athletics. At this time existing research has demonstrated that exercising Broca’s area of the brain (and other areas that are connected to this area through complex cognitive networks), either through natural parental stimulation in infants or through intense specific practice in school-aged children or adults, one can systematically build a brain that is better equipped for many cognitive tasks including language, reading, writing, and math as well as remediate a brain that seems to have deficits or learning disabilities in one or more of these areas.
Every time a parent plays a game like “Patty-cake, Patty-cake” where the child and parent duplicate a routine with actions and a poem or song, the parent is helping the child to exercise the mirror neuron system. Parents have been doing these action/nursery sequences for years, and there are many similar routines in many cultures. Examples of “mirror neuron” routines that have been around and passed on for generations in Western cultures include – “So Big!” where a parent ask the child something like, “How big are you?” and the child and parent respond together holding up their arms in like fashion, “SO BIG!” or, with older children, “Eensie Weensie Spider” where parent and child imitate each other by alternately touching the thumb of one hand to the forefinger of the other hand to emulate the spider climbing up a water spout.
The wonderful thing about these types of routines is that they illustrate how intuitive parents have been for centuries, at identifying and exploiting the natural directions and priorities of brain development. What worries many of us in neuroscience is when parents abandon these time-tested and intuitive interactions with our young children, swayed by technological advances that enhance productivity and drive positive cognitive changes in a mature brain but by abandoning natural parental interactive routines may actually jeopardize the delicate balance of stimulation in the developing brain.
We must exercise caution when adults develop products that appeal to parents with names that inspire confidence like, “Baby Einstein”, if the products have not been subjected to reasonable controlled studies that will help us understand the impact of these activities on young brains. Most companies that develop products for young children do not conduct this type of research because the assumption is that toys and play activities that engage infants and keep them entertained are not harmful. But, unfortunately, that assumption is not warranted. Many of us who put our children in “walkers” or “swings” in the latter part of the twentieth century learned that these “toys” had unintended consequences (i.e., negative effects, on early motor development).
As developmental neuroscientists and other specialists have begun to understand the implications, both positive and negative, of early stimulation on later brain development, those of us in the sciences need to better inform parents and “toy” makers may need to attempt more accountable to parents. In all fairness, however, it may be unreasonable to expect toy makers to conduct independent controlled research studies that we have not even demanded of drug companies. So, the view held by many scientists is that an educated parent can look beyond the hype of advertising and provide for the young child in their care, a fostering environment that is calmly yet convincingly brain-enhancing.
For Further Reading:
The Mirror Neuron System and the Consequences of Its Dysfunction. Marco Iacoboni and Mirella Depretto. Nature Reviews | Neuroscience Volume 7, December 2006
The Mirror Neuron System is More Active During Complementary Compared with Imitative Action. Roger Newman-Norlund, Hein T van Schie, Alexander M J van Zuijlen, and Harold Bekkering. Nature Neuroscience Vol. 10, May 2007
Using Human Brain Lesions to Infer Function: A Relic from a Past Era in the fMRI age? Chris Rorden and Hans-Otto Karnath. Nature Reviews | Neuroscience Vol. 5,  October 2004
Understanding Emotions in Others: Mirror Neuron Dysfunction in Children with Autism Spectrum Disorders. Mirella Depretto, Mari S. Davies, Jennifer H. Pfeifer, Ashley A. Scott, Marian Sigman, Susan Y. Bookheimer, and Marco Iacoboni. Nature Neuroscience Vol. 9,  December 2005
Social Intelligence: The New Science of Human Relationships. Daniel Goleman. NY, NY: Bantam Books, 2006.
Neural Mechanisms of Selective Auditory Attention are Enhanced by Computerized Training: Electrophysiological Evidence from Language-Impaired and Typically Developing Children. Courtney Stevens, Jessica Fanning, Donna Coch, Lisa Sanders,and Helen Neville. Brain Research Vol. 1205, April 2008.

Thursday, 16 February 2012

The truth about video games and the brain, by Bill Jenkins Ph.D

We’ve all seen the news reports, but how do video games really affect the brain? The short answer is this: researchers are working on it. While a great many studies have been done, science has a long way to go before we fully understand the impact video games can have.
The brain is a malleable, “plastic” structure that can change and evolve with every stimulus we give it. Whether that stimulus comes from listening to Tchaikovsky, studying Spanish, training in karate, or jumping through the mushroom kingdom in Super Mario Bros. Wii, every single input can affect the wiring of the brain if the conditions are right.
In a December 2011 article in Nature Reviews Neuroscience, six experts in neuroscience and cognitive psychology – Daphne Bavelier, C. Shawn Green, Doug Hyun Han, Perry F. Renshaw, Michael M. Merzenich and Douglas A. Gentile – offer their perspectives on frequently asked questions related to the effects of video games on the brain:
Are there beneficial effects of video games? Does evidence point to improvements in cognitive function? Given the wide variety of game types and the tasks they demand of the brain, this is an extremely complex and layered issue. Han and Renshaw cite studies indicating that game play may improve visual-spatial capacity, visual acuity, task switching, decision making and object tracking. In perception, gaming has been shown to enhance low-level vision, visual attention, processing speed and statistical inference. These skills are not necessarily general improvements in cognitive functioning, but specific skills transferrable to similar tasks. (Gentile)
Does playing video games have negative effects on the brain and behavior? On this issue, the jury is essentially unanimous: intensive play of high-action games has been shown to have negative cognitive effects. Merzenich references studies that indicate such games can create “listlessness and discontent in slower-paced and less stimulating academic, work or social environments.” Research has drawn connections between playing more violent games and an increase in more aggressive thoughts. Games with anti-social or violent content “have been shown to reduce empathy, to reduce stress associated with observing or initiating anti-social actions, and to increase confrontational and disruptive behaviors in the real world.” (ibid)
How strong is the evidence that video games are addictive? While strong evidence is mounting, research is proceeding but still incomplete. According to Han and Renshaw, investigations suggest that “brain areas that respond to game stimuli in patients with on-line game addiction are similar to those that respond to drug cue-induced craving in patients with substance dependence.” In addition, they state that gaming dependence has been shown to create “dysfunction in five domains: academic, social, occupational, developmental and behavioral.” While gaming addiction may differ from other types of addiction, it clearly appears to be a very real issue.
What should the role of video games be in education and rehabilitation? Again, if we come back to the underlying fact that any stimulus can change the brain under the right conditions, video games – a source of stimuli – certainly have a role to play in these areas. The question is, what stimuli are beneficial to which individuals, and how can we customize the gaming experience to give the learner or patient the stimuli that they most need at a given moment? Adaptive technologies that track a user’s responses and present follow-up material based on those response patterns, especially when wielded by an experienced educator or clinician, offer immense potential.
The last question these experts address is: Where is neuroscience headed in this field? Clearly, studies have shown that video games affect and change the brain, both for ill as well as for good. Some researchers, such as neuroscientist Paul Howard-Jones of Bristol University, are already experimenting with ways to harness computer gaming to enhance classroom learning. Future studies are likely to uncover both detrimental effects of video games and significant benefits of their employment as learning and rehabilitation tools.
“Because of their great didactic efficiencies,” says Merzenich, “and because of brain plasticity-based exercises can improve the performance characteristics of the brain of almost every child, these new game-like tools shall be at the core of a schooling revolution.”
For Further reading:
Brains on Video Games. Daphne Bavelier, C. Shawn Green, Doug Hyun Han, Perry F. Renshaw, Michael M. Merzenich and Douglas A. Gentile. Nature Reviews | Neuroscience. Vol. 12, December 2011.
Harnessing Gaming for the Classroom. D.D. Guttenplan. New York Times Europe, January 29, 2012.

Monday, 9 January 2012

Using the Power of Optimal Timing to Improve the Brain's Ability to Learn. Bill Jenkins, Ph.D


ability to learn
Learning is both a behavioral and biological process that is supported by the neurons in the brain over time.
When we learn, our brain cells physically change in response to stimulation, forming pathways to facilitate the connections we use repeatedly. For example, if you meet a person only once, you might not remember their name or recognize their face if you were to run into them on the street ten years on. On the other hand, if you see that person every day for a year, you will likely be able to recognize their face and remember their name much more readily should you not see that person for a long period of time.
Learning processes like these in the brain take predictable, measured amounts of time. While these rates will vary from person to person and nervous system to nervous system, we can depend upon certain relatively constant timeframes for learning and processing an understanding of some of these timeframes can allow educators to take maximum advantage of them. That’s why the Fast ForWord® products function on each of these scales by design, using the power of optimal timing to improve the brain’s ability to learn.
Learning depends upon a specific feedback loop characterized by timing between stimulus, response and reward [i]. Here are some of those timescales, along with how Fast ForWord works within each:
  • Milliseconds: Auditory processing happens on the millisecond timescale. Fast ForWord helps improves auditory processing rate to ensure that students are able to “keep up” with auditory input such as spoken directions from their teacher.
  • Seconds: Reinforcement learning happens on a scale of seconds and is achieved by interacting with one’s surroundings.  The Fast ForWord program’s reward system is based on this time scale, delivering rewards to students at just the right moment to maximize reinforcement learning, helping students get the most benefit from the program.
  • Minutes: Our actions change based on how we perceive our surroundings. This kind of adaptation can take minutes. As students move through Fast ForWord exercises, they can see their performance results changing minute by minute. Being able to see such improvement helps motivate students toward greater learning. In other words, as they perceive the positive results of their actions, students adapt and learn to generate more of those positive results.
  • Days or Weeks: Consolidation and maturation of memories can take days or weeks. When a student overcomes an obstacle in Fast ForWord, their confidence is strengthened and they not only learn the material, but they learn about their own capabilities and what success feels like. The memories of such experiences and the associated feelings – gathered and built upon over the days, weeks and months – lay the foundation to spur them on to future success. Such success in the classroom can lead to a greater drive to perform well in other areas, such as doing well on a test, winning on the athletic field, or successfully completing that college application.   We cannot underestimate the power of experiencing success and the sensation that it creates.
In the classroom, having an awareness of how long it takes for a student to assimilate and process certain kinds of information can add an entirely different rhythm to our instruction. In having such an understanding of how the brains of our students work, we can time our teaching to optimize learning and help our students achieve maximum success.
References:
[i] Why Time Matters Temporal Dynamics of Learning Center. University of California San Diego
Related Reading: